Skip to content

Publication ( *: corresponding author)


  1. Large area, high performance and stable perovskite light emitting diodes, submitted.
  2. Morphology Control of CsPbBr3 Thin-film by Diffusion Controlled Crystallization for Metal Halide Perovskite Light Emitting Diodes, submitted
  3. Achieving Over 4% Efficiency for SnS/CdS Thin-Film Solar Cells by Improving Heterojunction Interface Quality, Journal of Mterials Chemistry A, acceptted. (IF=11.301)*
  4. Control of defect states of kesterite solar cell to achieve more than 11 % power conversion efficiency, ACS Applied Energy Materials, in press.(IF=4.473)*                                                                                       TOC_for_NPDL_homepage2.jpg
  5. Characteristic material parameters of CIGS solar cell related with device performance, Current Applied Physics, 20, 1237-1243 (IF=2.281) *     Graph_Abs.gif
  6. Over 11 % efficient eco-friendly kesterite solar cell: effects of S-enriched surface of Cu2ZnSn(S,Se)4 absorber and band gap controlled (Zn,Sn)O buffer, Nano Energy 78, 105206 (IF=16.602)*TOC_jpeg_small.gif
  7. Investigation of low intensity light performances of Kesterite CZTSe, CZTSSe, CZTS thin film solar cells for indoor application, Journal of Mterials Chemistry A 8, 14538–14544  (IF=11.301)
  8. Copper-based etalon filter using antioxidant graphene layer, Nanotechnology 31, 445206 (IF=3.551)
  9. Application of Sn4+ doped In2S3 thin film to CIGS solar cell as a buffer layer, Sustainable Energy and Fuels 4, 362-368. (IF=5.503)*

[2019] ( Total IF= 51.15 )

  1. Sulfur-Alloying Effects on Cu(In,Ga)(S,Se)2 Solar Cell Fabricated by Using Aqueous Spray PyrolysisACS Applied Materials & Interfaces 11,45702-45708. (IF=8.456)*                                                                                                                                                                                                       ACS_AMI_CIGS.jpg
  2. Flexible high-efficiency CZTSSe solar cells on stainless-steel substrates, Journal of Materials Chemistry A 7, 24891-24899 (IF= 10.733)
  3. Modified Stack Layer for Two-Step Process for High Efficiency CZTSe Solar Cell, Journal of the Korean Physical Society 75(9), 735~741.(IF= 0.63)*
  4. Device Characteristics of Bandgap Tailored 10.04% Efficient CZTSSe Solar Cells Sprayed from Water Based Solution, ACS Applied Materials & Interfaces 11, 36735-36741. (IF= 8.456)*                                                                                                                                                                                                                                                                                                                                                               Temujin_ACS_AMI_small.jpg                                                                                                                                                         
  5. Flexible Cu2ZnSn(S,Se)4 solar cells over 10% efficiency and methods of enlarging the cell area, Nature Comm. 10, 2959 (IF= 11.878)
  6. The characteristics of Cu(In, Ga)Se2 thin-film solar cells by bandgap grading, Journal of Industrial and Engineering Chemistry 76, 437-442. (IF= 4.978)
  7. Improvement of Ga distribution with Sb incorporation for two-step low temperature processing of CIGSe thin film solar cells, Solar Energy Materials and Solar Cells 194, 244-251.  (IF= 6.019)*


[2018] ( Total IF= 86.071 )

  1. Fabrication and characterization of Cu3SbS4 solar cell with Cd-free buffer, Journal of the Korean Physical Society 73, 1794. (IF= 0.63)*
  2. Effect of crystal orientation and conduction band grading of absorber on efficiency of low temperature grown Cu(In,Ga)Se2 solar cells on flexible polyimide foil, Advanced Energy Materials 8, 1801501. (IF= 24.884)*AEM.JPG
  3. Sprayed Cu2ZnSn(S,Se)4 solar cells with controlled S/(S+Se) ratio, J. of Nanoelectronics and Optoelectronics, 13, 1725-1728. (IF= 1.069)*
  4. Pyroprotein-based electronic textiles with high thermal durability, Materials Today 21, 944. (IF= 24.372)
  5. The alteration of carrier separation in kesterite solar cells, Nano Energy 52, 38-53. (IF= 15.548)
  6. Existence of multiple phases and defect states of SnS absorber and its detrimental effect on efficiency of SnS solar cell, Current Applied Physics 18, 663-666 (IF= 2.01)*
  7. Characterization of CBO and defect states of CZTSe solar cells prepared by using two-step processCurrent Applied Physics 18, 191-199. (IF= 2.01)*
  8. Limiting effects of conduction band offset and defect states on high efficiency CZTSSe solar cell, Nano Energy 45, 75-83. (IF= 15.548)*


  1. Cu(In,Ga)Se2 solar cells with In2S3 buffer layer deposited by thermal evaporation, Journal of the Korean Physical Society71, 1012-1018. *
  2. Cd-reduced Hybrid Buffer Layer of CdS/Zn(O,S) for Environment-friendly CIGS Solar Cell, Sustainable Energy and Fuels 1, 1981-1990. *                                                                                                                                    SEF.jpg
  3. Fabrication and device characterization of potassium fluoride solution treated CZTSSe solar cell, Current Applied Physics 17, 1353-1360.*
  4. Precursor designs for Cu2ZnSn(S,Se)4 thin-film solar cells, Nano Energy 35, 52-61
  5. Comparison of chalcopyrite and kesterite solar cells, Journal of Industrial and Engineering Chemistry 45, 78-84.
  6. Improving the solar cell performance of electrodeposited Cu2ZnSn(S,Se)4 by varying the Cu/(Zn+Sn) ratio, Solar Energy 145, 13-19.
  7. Tailoring the defects and carrier density for beyond 10% efficient CZTSe thin film solar cells, Solar Energy Materials and Solar Cells 159, 447-455.


  1. Phase engineering of CBD grown tin sulfide films by post-sulfurization and solar cell application, Current Applied Physics 16 (12), 1666-1673*
  2. Application of slope-polishing technique for depth profile of selenized CIGS by micro-Raman spectroscopy, Applied Surface Science 379, PP.186~190 , 2016.08.30.
  3. Silver Nanowires Binding with Sputtered ZnO to Fabricate Highly Conductive and Thermally Stable Transparent Electrode for Solar Cell Applications, ACS Applied Materials & Interfaces 8 , PP.12764~12771 , 2016.05.05.*                               ACSAMI.jpg
  4. Fabrication of band gap tuned Cu 2 Zn (Sn 1-x Ge x)(S, Se) 4 absorber thin film using nanocrystal-based ink in non-toxic solvent, Journal of Alloys and Compounds 675, 370-376*
  5. Ge-Alloyed CZTSe Thin Film Solar Cell Using Molecular Precursor Adopting Spray Pyrolysis Approach, RSC Advances  44 , PP.37621~37627 , 2016.03.30.*
  6. Effects of Ge Alloying on Device Characteristics of Kesterite-Based CZTSSe Thin Film Solar Cells, Journal of Physical Chemistry C 120(8) , PP.4251~4258 , 2016.02.12.*
  7. Novel chemical route for chemical bath deposition of Cu2ZnSnS4 (CZTS) thin films with stacked precursor thin films, Materials Letters 162 , PP.40~43 , 2016.01.01.*



  1. Effects of the compositional ratio distribution with sulfurization temperatures in the absorber layer on the defect and surface electrical characteristics of Cu2ZnSnS4 solar cells, Progress in Photovoltaics 23, PP.1771~1784 , 2015.12.01.
  2. Sulfur stoichiometry driven chalcopyrite and pyrite structure of spray pyrolyzed Cu-alloyed FeS2 thin films, Materials Science in Semiconductor Processing 40 , PP.325~330 , 2015.12.01.
  3. Non-toxic precursor solution route for fabrication of CZTS solar cell based on all layers solution processed, Journal of Alloys and Compounds 646, PP.497~502 , 2015.10.15. *
  4. Structural, Optical and Electrical Properties of Cu2FeSnX4 (X=S, Se) Thin Films Synthesized by Chemical Spray Pyrolysis, Journal of Alloys and compounds 638, PP.103~108 , 2015.07.25.*
  5. Effects of Na and MoS2 on Cu2ZnSnS4 thin-film solar cell, Progress in Photovoltaics 23, PP.862~873 , 2015.07.01.
  6. Planar CH 3 NH 3 PbI 3 Perovskite Solar Cells with Constant 17.2% Average Power Conversion Efficiency Irrespective of the Scan Rate, Advanced Materials 27, PP.3424~3430 , 2015.06.10.                                               AM_Perov.jpg      
  7. A Nonvacuum Approach for Fabrication of Cu2ZnSnSe4/In2S3 Thin Film Solar Cell and Optoelectronic Characterization, Journal of Physical Chemistry C 119, PP.12226~12235 , 2015.06.04.*
  8. Nanostructured p-type CZTS thin films prepared by a facile solution process for 3D p?n junction solar cells, Nanoscale 7 , PP.11182~11189 , 2015.05.22.
  9. Wet chemical synthesis of WO3 thin films for supercapacitor application, Korean Journal of Chemical Engineering 32(5) , PP.974~979 , 2015.05.15.
  10. Properties of the chalcogenide-carbon nano tubes and graphene composite materials, Journal of Alloys and compounds 627, PP.468~475 , 2015.04.05.
  11. Band Gap Engineering of Alloyed Cu2ZnGexSn1-xQ4 (Q = S,Se) Films for Solar Cell, Journal of Physical Chemistry C 119 , PP.1706~1713 , 2015.01.29. *                                                                            Band_engineering.jpg



  1. NO2 sensing properties of nanostructured tungsten oxide thin films, Ceramics International 40(10) , PP.16495~16502 .
  2. Creating intermediate bands in ZnTe via co-alloying approach, Applied Physics Express , 7(12) , PP.1~4. *           APEX.jpg
  3. Nanoscale Amorphization of GeTe Nanowire with Conductive Atomic Force Microscope, Journal of nanoscience and Nanotechnology , 14 , PP.7688~7692.*
  4. Highly selective and sensitive CdS thin film sensors for detection of NO2 gas, RSC Advances 4(84), PP.44547~44554.
  5. Structural Transition and Band Gap Tuning of Cu-2(Zn,Fe)SnS4 Chalcogenide for Photovoltaic Application, Journal of Physical Chemistry C  118(26) , PP.14227~14237.*
  6. Study of In-x(O,OH,S)(y) buffer layer effect on CIGSe thin film solar cells, Current Applied Physics, 14(1), PP.S17~S22.*
  7. Direct imaging of enhanced current collection on grain boundaries of Cu(In,Ga)Se2 solar cells, Applied Physics Letters , 104(6), PP.63902. *                                                                                                                AFM_APL.jpg                                                                                                                       



  1. Effect of selenization on sprayed Cu2ZnSnSe4 thin film solar cell, Thin Solid Films 547(29), PP.178~180 .*
  2. Study of structural and optical properties of kesterite Cu2ZnGeX4 (X = S, Se) thin films synthesized by chemical spray pyrolysis, CRYSTENGCOMM 15(48), PP.10500~10509 . *                                                                       CrystengComm.jpg
  3. Structural analysis of Cu(In,Ga)Se-2 films fabricated by using sputtering and post-selenization, Current Applied Physics, 13(13), PP.1046~1049.*



  1. Sulfurization temperature effects on the growth of Cu2ZnSnS4 thin film, Current Applied Physics , 12(4), PP.1052~1057* 
  2. Fabrication of CIGS thin films by using spray pyrolysis and post-selenization, Journal of the Korean Physical Society , 60(12), PP.2018~2024 .*
  3. Effect of cu ratio on the growth of sprayed Cu2ZnSnS4 film, Journal of the Korean Physical Society, 60(12), PP.2013~2017.*



  1. Growth of Cu2ZnSnS4 Films by Sputtering with Post-Sulfurization, AIP Conference Proceedings , 1399, PP.157~158.*
  2. Deposition of CuInS2 films by electrostatic field assisted ultrasonic spray pyrolysis, Solar Energy Materials and Solar Cells , 95(1), PP.245~249.*
  3. Comparative Study of Cu2ZnSnS4 Film Growth, Solar Energy Materials and Solar Cells , 95(1) , PP.239~244.*
  4. Growth of Inx(S, O, OH)y Films by Chemical Bath Deposition, Current Applied Physics , 11(1), PP.81~87.*
  5. Structural analysis of CIGS film prepared by chemical spray deposition, Current Applied Physics , 11(1), PP.88~92.*



  1. Spray Deposition of Chalcogenide Thin Films, Journal of the Korean Physical Society , 57(6), PP.1600~1604 .*
  2. Nanoscale Crystallization of Phase Change Ge2Sb2Te5 Film with AFM Lithography, Scanning , 32, PP.320~326.*
  3. Growth of sprayed CIS film and post-sulfurization effects, Conference Record of the IEEE Photovoltaic Specialists Conference , PP.3443~3445.*
  4. Growth of Cu2ZnSnS4 thin films using sulfurization of stacked metallic films, Thin Solid Films , 518(22), PP.6567~6572.*
  5. Characterization of sprayed CuInS2 films by XRD and Raman spectroscopy measurements, Thin Solid Films , 518(22), PP.6537~6541.*


Copyrightⓒ. 2015. P.Singh @Nano Photoelectronic Device Lab. All Rights Reserved.