Skip to content



  1. Large area, high performance and stable perovskite light emitting diodes, submitted.
  2. Achieving Over 4% Efficiency for SnS/CdS Thin-Film Solar Cells by Improving Heterojunction Interface Quality,submitted
  3. Morphology Control of CsPbBr3 Thin-film by Diffusion Controlled Crystallization for Metal Halide Perovskite Light Emitting Diodes, submitted
  4. Control of defect states of kesterite solar cell to achieve over 11 % power conversion efficiency, submitted.
  5. Point defect engineering in kesterite Cu2ZnSnSe4 thin films by controlling reaction pathways, submitted
  6. Investigation of low intensity light performances of Kesterite CZTSe, CZTSSe, CZTS thin film solar cells for indoor application, submitted
  7. Over 11 % efficient eco-friendly kesterite solar cell: effects of S-enriched surface of Cu2ZnSn(S,Se)4 absorber and band gap controlled (Zn,Sn)O buffer, submitted
  8. Application of Sn4+ doped In2S3 thin film to CIGS solar cell as a buffer layer, Sustainable Energy and Fuels 4, 362-368. (IF=5.503)

[2019] ( Total IF= 51.15 )

  1. Sulfur-Alloying Effects on Cu(In,Ga)(S,Se)2 Solar Cell Fabricated by Using Aqueous Spray PyrolysisACS Applied Materials & Interfaces 11,45702-45708. (IF=8.456)                                                                                                                                                                                                        ACS_AMI_CIGS.jpg
  2. Flexible high-efficiency CZTSSe solar cells on stainless-steel substrates, Journal of Materials Chemistry A 7, 24891-24899 (IF= 10.733)
  3. Modified Stack Layer for Two-Step Process for High Efficiency CZTSe Solar Cell, Journal of the Korean Physical Society 75(9), 735~741.(IF= 0.63)
  4. Device Characteristics of Bandgap Tailored 10.04% Efficient CZTSSe Solar Cells Sprayed from Water Based Solution, ACS Applied Materials & Interfaces 11, 36735-36741. (IF= 8.456)                                                                                                                                                                                                                                                                                                                                                                Temujin_ACS_AMI_small.jpg                                                                                                                                                         
  5. Flexible Cu2ZnSn(S,Se)4 solar cells over 10% efficiency and methods of enlarging the cell area, Nature Comm. 10, 2959 (IF= 11.878)
  6. The characteristics of Cu(In, Ga)Se2 thin-film solar cells by bandgap grading, Journal of Industrial and Engineering Chemistry 76, 437-442. (IF= 4.978)
  7. Improvement of Ga distribution with Sb incorporation for two-step low temperature processing of CIGSe thin film solar cells, Solar Energy Materials and Solar Cells 194, 244-251.  (IF= 6.019)


[2018] ( Total IF= 86.071 )

  1. Fabrication and characterization of Cu3SbS4 solar cell with Cd-free buffer, Journal of the Korean Physical Society 73, 1794. (IF= 0.63)
  2. Effect of crystal orientation and conduction band grading of absorber on efficiency of low temperature grown Cu(In,Ga)Se2 solar cells on flexible polyimide foil, Advanced Energy Materials 8, 1801501. (IF= 24.884)AEM.JPG
  3. Sprayed Cu2ZnSn(S,Se)4 solar cells with controlled S/(S+Se) ratio, J. of Nanoelectronics and Optoelectronics, 13, 1725-1728. (IF= 1.069)
  4. Pyroprotein-based electronic textiles with high thermal durability, Materials Today 21, 944. (IF= 24.372)
  5. The alteration of carrier separation in kesterite solar cells, Nano Energy 52, 38-53. (IF= 15.548)
  6. Existence of multiple phases and defect states of SnS absorber and its detrimental effect on efficiency of SnS solar cell, Current Applied Physics 18, 663-666 (IF= 2.01)
  7. Characterization of CBO and defect states of CZTSe solar cells prepared by using two-step processCurrent Applied Physics 18, 191-199. (IF= 2.01)
  8. Limiting effects of conduction band offset and defect states on high efficiency CZTSSe solar cell, Nano Energy 45, 75-83. (IF= 15.548)


  1. Cu(In,Ga)Se2 solar cells with In2S3 buffer layer deposited by thermal evaporation, Journal of the Korean Physical Society71, 1012-1018.
  2. Cd-reduced Hybrid Buffer Layer of CdS/Zn(O,S) for Environment-friendly CIGS Solar Cell, Sustainable Energy and Fuels 1, 1981-1990.                                                                                                                                     SEF.jpg
  3. Fabrication and device characterization of potassium fluoride solution treated CZTSSe solar cell, Current Applied Physics 17, 1353-1360.
  4. Precursor designs for Cu2ZnSn(S,Se)4 thin-film solar cells, Nano Energy 35, 52-61
  5. Comparison of chalcopyrite and kesterite solar cells, Journal of Industrial and Engineering Chemistry 45, 78-84.
  6. Improving the solar cell performance of electrodeposited Cu2ZnSn(S,Se)4 by varying the Cu/(Zn+Sn) ratio, Solar Energy 145, 13-19.
  7. Tailoring the defects and carrier density for beyond 10% efficient CZTSe thin film solar cells, Solar Energy Materials and Solar Cells 159, 447-455.


  1. Phase engineering of CBD grown tin sulfide films by post-sulfurization and solar cell application, Current Applied Physics 16 (12), 1666-1673
  2. Application of slope-polishing technique for depth profile of selenized CIGS by micro-Raman spectroscopy, Applied Surface Science 379, PP.186~190 , 2016.08.30.
  3. Silver Nanowires Binding with Sputtered ZnO to Fabricate Highly Conductive and Thermally Stable Transparent Electrode for Solar Cell Applications, ACS Applied Materials & Interfaces 8 , PP.12764~12771 , 2016.05.05.                                ACSAMI.jpg
  4. Fabrication of band gap tuned Cu 2 Zn (Sn 1-x Ge x)(S, Se) 4 absorber thin film using nanocrystal-based ink in non-toxic solvent, Journal of Alloys and Compounds 675, 370-376
  5. Ge-Alloyed CZTSe Thin Film Solar Cell Using Molecular Precursor Adopting Spray Pyrolysis Approach, RSC Advances  44 , PP.37621~37627 , 2016.03.30.
  6. Effects of Ge Alloying on Device Characteristics of Kesterite-Based CZTSSe Thin Film Solar Cells, Journal of Physical Chemistry C 120(8) , PP.4251~4258 , 2016.02.12.
  7. Novel chemical route for chemical bath deposition of Cu2ZnSnS4 (CZTS) thin films with stacked precursor thin films, Materials Letters 162 , PP.40~43 , 2016.01.01.



  1. Effects of the compositional ratio distribution with sulfurization temperatures in the absorber layer on the defect and surface electrical characteristics of Cu2ZnSnS4 solar cells, Progress in Photovoltaics 23, PP.1771~1784 , 2015.12.01.
  2. Sulfur stoichiometry driven chalcopyrite and pyrite structure of spray pyrolyzed Cu-alloyed FeS2 thin films, Materials Science in Semiconductor Processing 40 , PP.325~330 , 2015.12.01.
  3. Non-toxic precursor solution route for fabrication of CZTS solar cell based on all layers solution processed, Journal of Alloys and Compounds 646, PP.497~502 , 2015.10.15.
  4. Structural, Optical and Electrical Properties of Cu2FeSnX4 (X=S, Se) Thin Films Synthesized by Chemical Spray Pyrolysis, Journal of Alloys and compounds 638, PP.103~108 , 2015.07.25.
  5. Effects of Na and MoS2 on Cu2ZnSnS4 thin-film solar cell, Progress in Photovoltaics 23, PP.862~873 , 2015.07.01.
  6. Planar CH 3 NH 3 PbI 3 Perovskite Solar Cells with Constant 17.2% Average Power Conversion Efficiency Irrespective of the Scan Rate, Advanced Materials 27, PP.3424~3430 , 2015.06.10.                                               AM_Perov.jpg      
  7. A Nonvacuum Approach for Fabrication of Cu2ZnSnSe4/In2S3 Thin Film Solar Cell and Optoelectronic Characterization, Journal of Physical Chemistry C 119, PP.12226~12235 , 2015.06.04.
  8. Nanostructured p-type CZTS thin films prepared by a facile solution process for 3D p?n junction solar cells, Nanoscale 7 , PP.11182~11189 , 2015.05.22.
  9. Wet chemical synthesis of WO3 thin films for supercapacitor application, Korean Journal of Chemical Engineering 32(5) , PP.974~979 , 2015.05.15.
  10. Properties of the chalcogenide?carbon nano tubes and graphene composite materials, Journal of Alloys and compounds 627, PP.468~475 , 2015.04.05.
  11. Band Gap Engineering of Alloyed Cu2ZnGexSn1-xQ4 (Q = S,Se) Films for Solar Cell, Journal of Physical Chemistry C 119 , PP.1706~1713 , 2015.01.29.                                                                             Band_engineering.jpg



  1. NO2 sensing properties of nanostructured tungsten oxide thin films, Ceramics International 40(10) , PP.16495~16502 .
  2. Creating intermediate bands in ZnTe via co-alloying approach, Applied Physics Express , 7(12) , PP.1~4.            APEX.jpg
  3. Nanoscale Amorphization of GeTe Nanowire with Conductive Atomic Force Microscope, Journal of nanoscience and Nanotechnology , 14 , PP.7688~7692.
  4. Highly selective and sensitive CdS thin film sensors for detection of NO2 gas, RSC Advances 4(84), PP.44547~44554.
  5. Structural Transition and Band Gap Tuning of Cu-2(Zn,Fe)SnS4 Chalcogenide for Photovoltaic Application, Journal of Physical Chemistry C  118(26) , PP.14227~14237.
  6. Study of In-x(O,OH,S)(y) buffer layer effect on CIGSe thin film solar cells, Current Applied Physics, 14(1), PP.S17~S22.
  7. Direct imaging of enhanced current collection on grain boundaries of Cu(In,Ga)Se2 solar cells, Applied Physics Letters , 104(6), PP.63902.                                                                                                                 AFM_APL.jpg                                                                                                                       



  1. Effect of selenization on sprayed Cu2ZnSnSe4 thin film solar cell, Thin Solid Films 547(29), PP.178~180 .
  2. Study of structural and optical properties of kesterite Cu2ZnGeX4 (X = S, Se) thin films synthesized by chemical spray pyrolysis, CRYSTENGCOMM 15(48), PP.10500~10509 .                                                                        CrystengComm.jpg
  3. Structural analysis of Cu(In,Ga)Se-2 films fabricated by using sputtering and post-selenization, Current Applied Physics, 13(13), PP.1046~1049.



  1. Sulfurization temperature effects on the growth of Cu2ZnSnS4 thin film, Current Applied Physics , 12(4) , PP.1052~1057 
  2. Fabrication of CIGS thin films by using spray pyrolysis and post-selenization, Journal of the Korean Physical Society , 60(12), PP.2018~2024 .
  3. Effect of cu ratio on the growth of sprayed Cu2ZnSnS4 film, Journal of the Korean Physical Society, 60(12), PP.2013~2017.



  1. Growth of Cu2ZnSnS4 Films by Sputtering with Post-Sulfurization, AIP Conference Proceedings , 1399, PP.157~158.
  2. Deposition of CuInS2 films by electrostatic field assisted ultrasonic spray pyrolysis, Solar Energy Materials and Solar Cells , 95(1), PP.245~249.
  3. Comparative Study of Cu2ZnSnS4 Film Growth, Solar Energy Materials and Solar Cells , 95(1) , PP.239~244.
  4. Growth of Inx(S, O, OH)y Films by Chemical Bath Deposition, Current Applied Physics , 11(1), PP.81~87.
  5. Structural analysis of CIGS film prepared by chemical spray deposition, Current Applied Physics , 11(1), PP.88~92.



  1. Spray Deposition of Chalcogenide Thin Films, Journal of the Korean Physical Society , 57(6), PP.1600~1604 .
  2. Nanoscale Crystallization of Phase Change Ge2Sb2Te5 Film with AFM Lithography, Scanning , 32, PP.320~326 .
  3. Growth of sprayed CIS film and post-sulfurization effects, Conference Record of the IEEE Photovoltaic Specialists Conference , PP.3443~3445.
  4. Growth of Cu2ZnSnS4 thin films using sulfurization of stacked metallic films, Thin Solid Films , 518(22), PP.6567~6572.
  5. Characterization of sprayed CuInS2 films by XRD and Raman spectroscopy measurements, Thin Solid Films , 518(22), PP.6537~6541.


Copyrightⓒ. 2015. P.Singh @Nano Photoelectronic Device Lab. All Rights Reserved.