Skip to content

Publication ( *: corresponding author)

We are looking for highly self-motivated graduate students. If you are interested in our works, please, contact jhk@inu.ac.kr

When you contact me, email me your CV, grade sheet, and English exam score such as IELTS, TOEIC, or TOEFL.

English score is mandetory for application to INU.



[2024]

  1. Impact of Chemical Source Selection on Aqueous Spray Deposited CZTSSe solar cells, ACS Applied Energy Materials, accepted, doi.org/10.1021/acsaem.3c02702
  2. Achieving highly efficient kesterite solar cells using simultaneous surface Ge substitution and rear interface engineering strategies, Chemical Engineering Journal, 479, 147842. (IF=15.1)
  3. Vertical Plane Depth-Resolved Surface Potential and Carrier Separation Characteristics in Flexible CZTSSe Solar Cells with over 12% Efficiency, Carbon Energye43 (IF=20.5) doi.org/10.1002/cey2.434

[2023] ( Total IF= 89.8  )

  1. High Efficiency Kesterite Solar Cells through a Dual Treatment Approach: Improving the Quality of Both Absorber Bulk and Heterojunction Interface, Advanced Energy Materials, 13(44), 2302941. (IF=27.8)* https://doi.org/10.1002/aenm.202302941


         AEM_ToC_231003.JPG

  1. Effects of Alkaline Earth Metal Doping on Garnet Li7La3Zr2O12, Results in Physics, 53, 106989 (IF=5.3)*
  2. Efficiency Improvement of Narrow Bandgap Cu(In,Ga)(S,Se)2 Solar Cell with Alkali Treatment via Aqueous Spray Pyrolysis Deposition, ACS Applied Materials & Interfaces, 15, 23199-23207. (IF=9.5)* https://doi.org/10.1021/acsami.3c02362
  3. Boosting internal quantum efficiency via ultrafast triplet exciton transfer in 2H-MoTe2 film, Science Advances, 9, eadg2324. (IF=13.6)
  4. Identifying the relationships between subsurface absorber defects and the characteristics of kesterite solar cells, Carbon Energy, e336.(IF=20.5)* doi:10.1002/cey2.336
  5. High efficiency CZTSSe solar cells enabled by dual Ag-passivation approach via aqueous solution process, Journal of Energy Chemistry, 77, 239-246. (IF=13.1) * https://doi.org/10.1016/j.jechem.2022.10.004

[2022]  ( Total IF= 64.155)

  1. Study of Co-Doping Effects of Ta5+ and Ga3+ on Garnet Li7La3Zr2O12,   ACS Omega, 7, 47265-47273. (IF=4.132)*            https://doi.org/10.1021/acsomega.2c06544
       llzo.JPG


  1. 
  2.  Overcoming the limitation of low bandgap Cu2ZnSn(S,Se)4 devices under indoor light conditions: From design to prototype IoT application, Journal of Materials Chemistry A, 10, 23831-23842  (IF=14.511)
    DOI

  3. High Efficiency Aqueous Solution Sprayed CIGSSe Solar Cells: Effects of Zr4+-Alloyed In2S3 Buffer and K-Alloyed CIGSSe Absorber, Advanced Functional Materials, 32, 2206561. (IF=19.924 )* https://doi.org/10.1002/adfm.202206561 2022-08-30 100832.jpg

  4. Spray-coated nanocrystalline CsPbBr3 perovskite thin-films for large area and efficient rigid and flexible light emitting diodes, Journal of Alloys and Compounds, 918, 165560. (IF=6.371)*  
  5. Fabrication of in situ alkali doped flexible CIGSSe solar cells by using aqueous spray deposition, Curr. Appl. Phys. 41, 66-72. (IF=2.856)*
  6. Effects of Potassium Treatment on SnO2 Electron Transport Layers for Improvements of Perovskite Solar Cells, Solar Energy, 233, 353-362. (IF=7.188)*
  7. Defect Passivation for Kesterite CZTSSe Solar Cells via In Situ Al2O3 Incorporation into the Bulk CZTSSe Absorber, Solar RRL, 6, 2100862. (IF=9.173)*                                    https://doi.org/10.1002/solr.202100862*                                                                    


  8. [2021] ( Total IF= 55.268)

    1. Insights into High-Efficiency Ag-alloyed CZTSSe Solar Cells Fabricated through Aqueous Spray Deposition MethodACS Applied Materials & Interfaces , 13,45426-45434. (IF= 9.229 )* GA_Temujin2.JPG
    2. Sodium Effects on the Diffusion, Phase, and Defect Characteristics of Kesterite Solar Cells and Flexible Cu2ZnSn(S,Se)4 with Greater than 11% Efficiency, Advaced Functional Materials, 2021, 2102238. (IF= 18.8)
    3. Morphology Control of CsPbBr3 Thin-film by Diffusion Controlled Crystallization for Metal Halide Perovskite Light Emitting Diodes, Journal of Industrial and Engineering Chemistry, 97, 417-425 (IF=5.278 )
    4. Influence of reaction pathway on the defect formation in Cu2ZnSnSe4 thin film, ACS Appl. Mater. Interfaces13, 11, 13425–13433(IF= 9.229 )
    5. Surface and Interface Engineering for Highly Efficient Cu2ZnSnSe4 Thin Film Solar Cells Via In-Situ Formed ZnSe Nanoparticle, Journal of Mterials Chemistry A, 9, 5442-5453.  (IF=12.732)

    [2020] ( Total IF= 55.012)

    1. Achieving Over 4% Efficiency for SnS/CdS Thin-Film Solar Cells by Improving Heterojunction Interface Quality, Journal of Mterials Chemistry A, 8, 20658-20665. (IF=11.301)*
    2. Control of defect states of kesterite solar cell to achieve more than 11 % power conversion efficiency, ACS Applied Energy Materials,  3, 9, 8500–8508. (I.F=4.473)*                                                                                       TOC_for_NPDL_homepage2.jpg
    3. Characteristic material parameters of CIGS solar cell related with device performance, Current Applied Physics, 20, 1237-1243 (IF=2.281) *    
    4. Over 11 % efficient eco-friendly kesterite solar cell: effects of S-enriched surface of Cu2ZnSn(S,Se)4 absorber and band gap controlled (Zn,Sn)O buffer, Nano Energy 78, 105206 (IF=16.602)*TOC_jpeg_small.gif
    5. Investigation of low intensity light performances of Kesterite CZTSe, CZTSSe, CZTS thin film solar cells for indoor application, Journal of Mterials Chemistry A 8, 14538–14544  (IF=11.301)
    6. Copper-based etalon filter using antioxidant graphene layer, Nanotechnology 31, 445206 (IF=3.551)
    7. Application of Sn4+ doped In2S3 thin film to CIGS solar cell as a buffer layer, Sustainable Energy and Fuels 4, 362-368. (IF=5.503)*


    [2019] ( Total IF= 51.15 )

    1. Sulfur-Alloying Effects on Cu(In,Ga)(S,Se)2 Solar Cell Fabricated by Using Aqueous Spray PyrolysisACS Applied Materials & Interfaces 11,45702-45708. (IF=8.456)*                                                                                                                                                                                                       ACS_AMI_CIGS.jpg
    2. Flexible high-efficiency CZTSSe solar cells on stainless-steel substrates, Journal of Materials Chemistry A 7, 24891-24899 (IF= 10.733)
    3. Modified Stack Layer for Two-Step Process for High Efficiency CZTSe Solar Cell, Journal of the Korean Physical Society 75(9), 735~741.(IF= 0.63)*
    4. Device Characteristics of Bandgap Tailored 10.04% Efficient CZTSSe Solar Cells Sprayed from Water Based Solution, ACS Applied Materials & Interfaces 11, 36735-36741. (IF= 8.456)*                                                                                                                                                                                                                                                                                                                                                              Temujin_ACS_AMI_small.jpg                                                                                                                                                         
    5. Flexible Cu2ZnSn(S,Se)4 solar cells over 10% efficiency and methods of enlarging the cell area, Nature Comm. 10, 2959 (IF= 11.878)
    6. The characteristics of Cu(In, Ga)Se2 thin-film solar cells by bandgap grading, Journal of Industrial and Engineering Chemistry 76, 437-442. (IF= 4.978)
    7. Improvement of Ga distribution with Sb incorporation for two-step low temperature processing of CIGSe thin film solar cells, Solar Energy Materials and Solar Cells 194, 244-251.  (IF= 6.019)*

                 

    [2018] ( Total IF= 86.071 )

    1. Fabrication and characterization of Cu3SbS4 solar cell with Cd-free buffer, Journal of the Korean Physical Society 73, 1794. (IF= 0.63)*
    2. Effect of crystal orientation and conduction band grading of absorber on efficiency of low temperature grown Cu(In,Ga)Se2 solar cells on flexible polyimide foil, Advanced Energy Materials 8, 1801501. (IF= 24.884)*AEM.JPG
    3. Sprayed Cu2ZnSn(S,Se)4 solar cells with controlled S/(S+Se) ratio, J. of Nanoelectronics and Optoelectronics, 13, 1725-1728. (IF= 1.069)*
    4. Pyroprotein-based electronic textiles with high thermal durability, Materials Today 21, 944. (IF= 24.372)
    5. The alteration of carrier separation in kesterite solar cells, Nano Energy 52, 38-53. (IF= 15.548)
    6. Existence of multiple phases and defect states of SnS absorber and its detrimental effect on efficiency of SnS solar cell, Current Applied Physics 18, 663-666 (IF= 2.01)*
    7. Characterization of CBO and defect states of CZTSe solar cells prepared by using two-step processCurrent Applied Physics 18, 191-199. (IF= 2.01)*
    8. Limiting effects of conduction band offset and defect states on high efficiency CZTSSe solar cell, Nano Energy 45, 75-83. (IF= 15.548)*
             kesterite.jpg 


    [2017]

    1. Cu(In,Ga)Se2 solar cells with In2S3 buffer layer deposited by thermal evaporation, Journal of the Korean Physical Society71, 1012-1018. *
    2. Cd-reduced Hybrid Buffer Layer of CdS/Zn(O,S) for Environment-friendly CIGS Solar Cell, Sustainable Energy and Fuels 1, 1981-1990. *                                                                                                                                    SEF.jpg
    3. Fabrication and device characterization of potassium fluoride solution treated CZTSSe solar cell, Current Applied Physics 17, 1353-1360.*
    4. Precursor designs for Cu2ZnSn(S,Se)4 thin-film solar cells, Nano Energy 35, 52-61
    5. Comparison of chalcopyrite and kesterite solar cells, Journal of Industrial and Engineering Chemistry 45, 78-84.
    6. Improving the solar cell performance of electrodeposited Cu2ZnSn(S,Se)4 by varying the Cu/(Zn+Sn) ratio, Solar Energy 145, 13-19.
    7. Tailoring the defects and carrier density for beyond 10% efficient CZTSe thin film solar cells, Solar Energy Materials and Solar Cells 159, 447-455.



    [2016]

    1. Phase engineering of CBD grown tin sulfide films by post-sulfurization and solar cell application, Current Applied Physics 16 (12), 1666-1673*
    2. Application of slope-polishing technique for depth profile of selenized CIGS by micro-Raman spectroscopy, Applied Surface Science 379, PP.186~190 , 2016.08.30.
    3. Silver Nanowires Binding with Sputtered ZnO to Fabricate Highly Conductive and Thermally Stable Transparent Electrode for Solar Cell Applications, ACS Applied Materials & Interfaces 8 , PP.12764~12771 , 2016.05.05.*                               ACSAMI.jpg
    4. Fabrication of band gap tuned Cu 2 Zn (Sn 1-x Ge x)(S, Se) 4 absorber thin film using nanocrystal-based ink in non-toxic solvent, Journal of Alloys and Compounds 675, 370-376*
    5. Ge-Alloyed CZTSe Thin Film Solar Cell Using Molecular Precursor Adopting Spray Pyrolysis Approach, RSC Advances  44 , PP.37621~37627 , 2016.03.30.*
    6. Effects of Ge Alloying on Device Characteristics of Kesterite-Based CZTSSe Thin Film Solar Cells, Journal of Physical Chemistry C 120(8) , PP.4251~4258 , 2016.02.12.*
    7. Novel chemical route for chemical bath deposition of Cu2ZnSnS4 (CZTS) thin films with stacked precursor thin films, Materials Letters 162 , PP.40~43 , 2016.01.01.*

     


    [2015]


    1. Effects of the compositional ratio distribution with sulfurization temperatures in the absorber layer on the defect and surface electrical characteristics of Cu2ZnSnS4 solar cells, Progress in Photovoltaics 23, PP.1771~1784 , 2015.12.01.
    2. Sulfur stoichiometry driven chalcopyrite and pyrite structure of spray pyrolyzed Cu-alloyed FeS2 thin films, Materials Science in Semiconductor Processing 40 , PP.325~330 , 2015.12.01.
    3. Non-toxic precursor solution route for fabrication of CZTS solar cell based on all layers solution processed, Journal of Alloys and Compounds 646, PP.497~502 , 2015.10.15. *
    4. Structural, Optical and Electrical Properties of Cu2FeSnX4 (X=S, Se) Thin Films Synthesized by Chemical Spray Pyrolysis, Journal of Alloys and compounds 638, PP.103~108 , 2015.07.25.*
    5. Effects of Na and MoS2 on Cu2ZnSnS4 thin-film solar cell, Progress in Photovoltaics 23, PP.862~873 , 2015.07.01.
    6. Planar CH 3 NH 3 PbI 3 Perovskite Solar Cells with Constant 17.2% Average Power Conversion Efficiency Irrespective of the Scan Rate, Advanced Materials 27, PP.3424~3430 , 2015.06.10.    
    7. A Nonvacuum Approach for Fabrication of Cu2ZnSnSe4/In2S3 Thin Film Solar Cell and Optoelectronic Characterization, Journal of Physical Chemistry C 119, PP.12226~12235 , 2015.06.04.*
    8. Nanostructured p-type CZTS thin films prepared by a facile solution process for 3D p?n junction solar cells, Nanoscale 7 , PP.11182~11189 , 2015.05.22.
    9. Wet chemical synthesis of WO3 thin films for supercapacitor application, Korean Journal of Chemical Engineering 32(5) , PP.974~979 , 2015.05.15.
    10. Properties of the chalcogenide-carbon nano tubes and graphene composite materials, Journal of Alloys and compounds 627, PP.468~475 , 2015.04.05.
    11. Band Gap Engineering of Alloyed Cu2ZnGexSn1-xQ4 (Q = S,Se) Films for Solar Cell, Journal of Physical Chemistry C 119 , PP.1706~1713 , 2015.01.29. *                                                                            

     


    [2014]


    1. NO2 sensing properties of nanostructured tungsten oxide thin films, Ceramics International 40(10) , PP.16495~16502 .
    2. Creating intermediate bands in ZnTe via co-alloying approach, Applied Physics Express , 7(12) , PP.1~4. *           APEX.jpg
    3. Nanoscale Amorphization of GeTe Nanowire with Conductive Atomic Force Microscope, Journal of nanoscience and Nanotechnology , 14 , PP.7688~7692.*
    4. Highly selective and sensitive CdS thin film sensors for detection of NO2 gas, RSC Advances 4(84), PP.44547~44554.
    5. Structural Transition and Band Gap Tuning of Cu-2(Zn,Fe)SnS4 Chalcogenide for Photovoltaic Application, Journal of Physical Chemistry C  118(26) , PP.14227~14237.*
    6. Study of In-x(O,OH,S)(y) buffer layer effect on CIGSe thin film solar cells, Current Applied Physics, 14(1), PP.S17~S22.*
    7. Direct imaging of enhanced current collection on grain boundaries of Cu(In,Ga)Se2 solar cells, Applied Physics Letters , 104(6), PP.63902. *                                 AFM_APL.jpg                                                                                                                       

     

    [2013]


    1. Effect of selenization on sprayed Cu2ZnSnSe4 thin film solar cell, Thin Solid Films 547(29), PP.178~180 .*
    2. Study of structural and optical properties of kesterite Cu2ZnGeX4 (X = S, Se) thin films synthesized by chemical spray pyrolysis, CRYSTENGCOMM 15(48), PP.10500~10509 . *     CrystengComm.jpg
    3. Structural analysis of Cu(In,Ga)Se-2 films fabricated by using sputtering and post-selenization, Current Applied Physics, 13(13), PP.1046~1049.*

     


    [2012]


    1. Sulfurization temperature effects on the growth of Cu2ZnSnS4 thin film, Current Applied Physics , 12(4), PP.1052~1057* 
    2. Effect of cu ratio on the growth of sprayed Cu2ZnSnS4 film, Journal of the Korean Physical Society, 60(12), PP.2013~2017.*
    3. Fabrication of CIGS thin films by using spray pyrolysis and post-selenization, Journal of the Korean Physical Society , 60(12), PP.2018~2024 .*

                 


    [2011]


    1. Growth of Cu2ZnSnS4 Films by Sputtering with Post-Sulfurization, AIP Conference Proceedings , 1399, PP.157~158.*
    2. Deposition of CuInS2 films by electrostatic field assisted ultrasonic spray pyrolysis, Solar Energy Materials and Solar Cells , 95(1), PP.245~249.*
    3. Comparative Study of Cu2ZnSnS4 Film Growth, Solar Energy Materials and Solar Cells , 95(1) , PP.239~244.*
    4. Structural analysis of CIGS film prepared by chemical spray deposition, Current Applied Physics , 11(1), PP.88~92.*
    5. Growth of Inx(S, O, OH)y Films by Chemical Bath Deposition, Current Applied Physics , 11(1), PP.81~87.*


                     


    [2010]



    1. Growth of sprayed CIS film and post-sulfurization effects, Conference Record of the IEEE Photovoltaic Specialists Conference , PP.3443~3445.*
    2. Growth of Cu2ZnSnS4 thin films using sulfurization of stacked metallic films, Thin Solid Films , 518(22), PP.6567~6572.*
    3. Characterization of sprayed CuInS2 films by XRD and Raman spectroscopy measurements, Thin Solid Films , 518(22), PP.6537~6541.*
    4. Spray Deposition of Chalcogenide Thin Films, Journal of the Korean Physical Society , 57(6), PP.1600~1604 .*
    5. Nanoscale Crystallization of Phase Change Ge2Sb2Te5 Film with AFM Lithography, Scanning , 32, PP.320~326.*

                 afm-pcram2.JPG



    [2006-2009]
    1. Chalcogen-based thin film transistor using CuInSe2 photo-active layerCurrent Applied Physics (2009) DOI: 10.1016/J.CAP.2009.01.0
    2. Growth of CuInS2 Films by Using Spray Pyrolysis, Journal of the Korean Physical Society (2008) DOI: 10.3938/JKPS.53.2453 *
    3. Chalcogenide thin-film transistors using oxygenated n-type and p-type phase change materials, Applied Physics Letters, (2008) DOI: 10.1063/1.2963401
    4. Growth of ZnS films and post-annealing effects, Journal of the Korean Physical Society (2008) DOI: 10.3938/JKPS.53.331 *
    5. Recent progress of nano-technology with NSOM, Micron (2007) DOI: 10.1016/J.MICRON.2006.06.010 *
    6. Optical and electrical properties of high and low resistive CuInSe2 films: A potential photoactive channel for chalcogen photo thin film transistor, IEEE NMDC 2006: IEEE NANOTECHNOLOGY MATERIALS AND DEVICES CONFERENCE PROCEEDINGS  (2006) DOI: 10.1109/NMDC.2006.4388897 
    7. Enhanced surface evolution induced by the molecular desorption in dodecanethiol self-assembled monolayer on Au(111), Surface Science (2006) DOI: 10.1016/J.SUSC.2005.11.014
    8. Simulation study on heat conduction of a nanoscale phase-change random access memory cell, Journal of Nanoscience and Nanotechnology (2006) DOI: 10.1166/JNN.2006.17963 *

    pram.JPG      pram-comsol.JPG


Copyrightⓒ. 2015. P.Singh @Nano Photoelectronic Device Lab. All Rights Reserved.